
A Fixed Backoff-time Switching Method for
Wireless Mesh Networks: Design and Linux

Implementation

Sritrusta Sukaridhoto∗, Nobuo Funabiki†, Dadet Pramudihanto∗ and Zainal Arief∗
∗Electronics Engineering Polytechnic Institute Surabaya, Indonesia

†Graduate School of Natural Science and Technology, Okayama University, Japan
Email: {dhoto, dadet, zar}@eepis-its.edu, funabiki@cne.okayama-u.ac.jp

Abstract—As a flexible and cost-efficient scalable Internet
access network, we have studied architectures, protocols, and
design optimizations of the Wireless Internet-access Mesh NET-
work (WIMNET). WIMNET is composed of wirelessly connected
access points (APs), where any host can basically access to the
Internet through multihop communications between APs with
IEEE 802.11 standard. In WIMNET, undesirable situations can
often happen such that some links dominate the bandwidth while
others become insufficient due to the limited shared bandwidth.
However, the contention resolution mechanism using a random
backoff-time in the CSMA/CA protocol of 802.11 standards is
not sufficient for handling real-time traffic in multihop wireless
communications. Previously, we have proposed the concept of
the CSMA-based Fixed Backoff time Switching (CSMA-FBS)
method for WIMNET to improve the performance by giving
necessary link activation chances for multi-hop communications.
We implemented our proposal on the QualNet simulator, and
verify its effectiveness through simulations. In this paper, we
present an implementation of the FBS method in Linux kernel
to show its practicality and investigate the performance in a real
network. Our design consists of implementations or modifications
of the five programs: Kernel configuration, Debugfs, Minstrel, iw,
and FBSdaemon.

Keywords—Wireless mesh network, fixed backoff-time switching,
CSMA-FBS, Linux, implementation

I. Introduction

Recently, a wireless mesh network has been extensively
studied as a promising network technology for a flexible and
cost-efficient solution to expand the communication service
area by distributing wireless mesh routers on a network field
[1], [2], [3]. The mesh routers are connected with each other
through multihop wireless communication links using IEEE
802.11 standards, in addition to wireless links between client
hosts and routers. Then, as a scalable Internet access network
based on this technology, we have studied architectures, proto-
cols, and design optimizations of the Wireless Internet access
Mesh NETwork (WIMNET) [3]. For a simple architecture,
WIMNET is composed of only access points (APs) as mesh
routers as shown in Figure 1. At least one AP acts as a
GateWay (GW) to the Internet. Any host in WIMNET can be
connected to the Internet through multihop communications
between APs and the GW after associated with one neighbor
AP.

WIMNET adopts the commonly used CSMA/CA (Carrier
Sense Multiple Access with Collision Avoidance) protocol of

Fig. 1: Outline of WIMNET.

the IEEE802.11 MAC (Media Access Control) for the shared
communication media access by resolving contentions among
interfered wireless links [4]. As illustrated in Figure 2, in
this protocol, any node holding a transmission packet is on
standby for a constant DIFS period and a random time called
the backoff-time before starting the data frame transmission, to
avoid frame collisions among contending nodes while provid-
ing their fairness. At each transmission chance, a random value
within a size called the Contention Window (CW) is selected
for the backoff-time. When a node fails in the transmission, the
CW size is doubled to reduce the probability of the collision
occurrence in the retransmission, which is called the binary
exponential backoff. When the node succeeds in a transmission,
it resets the CW size to the initial one.

Fig. 2: Timing chart for data frame transmission.

Unfortunately, this conventional CSMA/CA protocol is not
sufficient for multihop communications in WIMNET. Firstly,
heavy congestions of links around the GW can be bottlenecks
of whole communications in WIMNET, because these links
have to handle a lot of packets to/from the GW for the Internet
access. Thus, they should be activated with much higher
priorities than other links. Secondly, interferences among these

congested links may not be resolved by a random backoff-
time in the CSMA/CA protocol because of the limited CW
size. Here, we note that the initial CW size is small, and even
the maximum CW size is limited. Then, multiple conflicting
links can be activated simultaneously by generating the same
or similar backoff-times at their source nodes. As a result,
any link cannot complete the packet transmission successfully,
and needs a retransmission that may cause further conflicts.
Hence, using the conventional CSMA/CA protocol, WIMNET
may cause a lot of packet losses and intolerable delays, which
cannot afford real-time applications such as IP-phones and
IP-TVs, although their popularity has been increased with
advancements of digital communication technologies.

In order to the abovementioned problem, we have proposed
the Fixed Backoff-time Switching (FBS) method for the CS-
MA/CA protocol, and shown its implementation on QualNet
[5], [6], [7], [8], [9], [10]. QualNet [11] adopts a more realistic
physical model than other network simulators such as ns-2
[12].

In the FBS method, the three constant parameters, namely
the target link activation rate, the active backoff-time, and the
passive backoff-time, must be assigned to every link before
starting communications. Here, the link activation means that
the source node of the corresponding wireless link sends out
a signal for a frame transmission. The target link activation
rate represents the rate of activating the corresponding link
that is necessary to handle the link traffics properly. The active
backoff-time represents a shorter waiting time for the link to be
activated preferentially when it holds packets for transmissions.
The passive backoff-time represents a longer waiting time for
the link to be activated only if the contending links using the
active backoff-time are not activated, where a larger value than
any active backoff-time is used. Besides, for any backoff-time
of any link, a different value is assigned from each other to
avoid simultaneous link activations as best as possible, and
the magnitude follows the descending order of expected traffic
loads of links so that congested links can be activated more
frequently.

During communications, the actual link activation rate is
observed by counting the numbers of link activation chances
and actually activated times for each link, and taking their
fraction. If this value is smaller than the target activation rate,
the active backoff-time is selected for the preferential activation
of the link. Otherwise, the passive backoff-time is selected.
Because different values are assigned to them, contentions
among interfered links are expected to be resolved.

In this paper, we present an implementation design of the
FBS method on a Linux PC to evaluate the performance in
real networks. As an open source operating system, Linux
has been used as a platform to implement new protocols,
methods, and devices for advancements of wireless networks
including wireless mesh networks [13]-[16]. Our implemen-
tation design consists of implementations or modifications of
the five programs: Kernel configuration, Debugfs, Minstrel, iw,
and FBSdaemon.

The rest of this paper is organized as follows: Section II
reviews the FBS method. Section III presents our Linux
implementation design of the FBS method. Section IV shows
our experiment using Linux PC. Section V concludes this paper

with some future works.

II. Review of FBS Method

In this section, we briefly review the FBS method for
WIMNET.

A. Overview of FBS Method

The FBS method uses the active backoff-time and the
passive backoff-time for each link, and selects either of them
as a backoff-time at a frame transmission by comparing the
target link activation rate and the actual link activation rate.
Any backoff-time is assigned a different fixed value from
each other so that no pair of the conflicting links may be
activated simultaneously. Besides, the backoff-time for a link
with larger traffic is assigned a smaller value than that for a
link with smaller one, so that congested links can be activated
preferentially. Furthermore, any active backoff-time is assigned
a smaller value than a passive one, so that links using active
ones have higher priorities in activations than links using
passive ones.

During communications, every time a node holding packets
detects that the channel for transmissions becomes free, it
updates both the target activation rate and the actual activation
rate. If the actual one is smaller than the target one, it selects
the active backoff-time to let the link be activated, because the
current activation rate of the link is not sufficient to handle
its traffic. On the other hand, if it is larger, it selects the
passive backoff-time to let other links with active backoff-times
be activated with higher priorities. A link with the passive
backoff-time can be activated only if any conflicting link with
the active backoff-time does not hold packets. The following
subsections describe how to calculate the three parameters in
the FBS method.

B. Target Link Activation Rate

For a wireless link li j transmitting packets from APi to AP j
for i = 1, · · · ,N and j = 1, · · · ,N, the target link activation
rate rti j can be calculated by:

rti j =
tni j

ani j
(1)

where tni j represents the target number of activating link li j per
second, and ani j does the average number of link activations
per second. tni j can be given from the requested bit rate by:

tni j =
rbi j

f bi j
× (1 + f ei j) (2)

where rbi j represents the number of bits per second that link
li j needs to be transmitted, f bi j does the average number of
bits in one transmitted frame, and f ei j does the rate of causing
the frame transmission error. ani j can be given by:

ani j =
1

f ti j
(3)

where f ti j represents the average duration time of one frame
transmission.

Among the parameters for the target link activation rate,
rbi j should be calculated by taking the summation of the bit
rates requested by the applications using link li j in the routing
path of WIMNET. The others, f bi j, f ei j, and f ti j, should be
updated during communications by the following equations:

f bi j =
sbi j

s fi j
(4)

f ei j =
f fi j

s fi j + f fi j
(5)

f ti j =
t

s fi j + f fi j + o fi j
(6)

where sbi j, s fi j, f fi j, and o fi j represent the total number of
successfully transmitted bits by link li j, the total number of
successfully transmitted frames, the total number of failed
frames, and the total number of transmitted frames of the
interfered links with link li j, when t seconds have passed since
the communication started in WIMNET, respectively.

C. Actual Link Activation Rate

The actual link activation rate rai j for link li j is obtained
by dividing the number of successfully transmitted frames with
the number of possibly activating chances for the link:

rai j =
s fi j

aci j
(7)

where aci j represents the number of possibly activating
chances of link li j.

In the CSMA/CA protocol, aci j is hard to be obtained.
Unlike the TDMA protocol where the link activations are
synchronized by a single clock, the timing of counting the
number of activating chances is not clear in the CSMA/CA
protocol. Besides, the link activation chances resulting in
transmission failures must be considered. In this paper, aci j
is counted every time APi detects that the channel becomes
free.

D. Active/Passive Backoff-time

The active backoff-time tam
i j and the passive backoff-time

tpm
i j for link li j are calculated by the following procedure,

where m represents the number of consecutively failed trans-
missions (or retry counter) due to heavy traffics and is saturated
by 6. These backoff-times are updated every time the routing
path is changed due to the topology change by adding a
new AP or removing an existing AP and the host distribution
change by the host join or leave to WIMNET. Then, they are
fixed during communications.

1) Calculate the number of bits to be transmitted per
second rbi j for link li j by taking the summation of
the bit rates for all the communication requests by
the hosts using li j:

rbi j =
∑
k∈Hi j

hrk (8)

where Hi j represents the set of the host indices using
link li j in the routing path, and hrk does the requested
bit rate (bps) of host k.

2) Sort every link in descending order of rbi j, where the
tiebreak is resolved by the number of hosts using this
link for the routing path.

3) Set this sorted order to the link priority pi j for li j.
4) Calculate the active/passive backoff-times for li j:

taminm
i j = CWmin ·

(
2m−1 + 2m−2 · pi j−1

P

)
,

tamaxm
i j = CWmin ·

(
2m−1 + 2m−2 · pi j

P

)
,

tam
i j = rand

[
taminm

i j, tamaxm
i j

]
,

(9)

where taminm
i j and tamaxm

i j represent the minimum
and maximum values for the active backoff-time for
li j when the retry counter is m, CWmin does the initial
CW size, and P does the largest priority among the
links. In our simulations, CWmin = 31 is used in any
case.

tpminm
i j = CWmin ·

(
2m−1 + 2m−2 · P+pi j−1

P

)
,

tpmaxm
i j = CWmin ·

(
2m−1 + 2m−2 · P+pi j

P

)
,

tpm
i j = rand

[
tpminm

i j, tpmaxm
i j

]
.

(10)

where tpminm
i j and tpmaxm

i j represent the minimum
and maximum values for the passive backoff-time for
li j when the retry counter is m.

III. Design for Linux Implementation of FBS Method

In this section, we present our design for Linux implemen-
tation of the FBS method. For convenience, we call a Linux
PC implementing the FBS method a Linux-FBS in this paper.

A. Overview

Basically, in this design for a Linux-FBS, we collect the
necessary information from the statistics in the devices, to
calculate the fixed back-off time in the FBS method, and assign
its calculated value to AIFS for use as the actual backoff-time
in the network device with CWmin = CWmax = 0, as shown in
Figure 3.

For our implementation of the FBS method in Linux kernel,
we have considered implementations or modifications of the
following five programs.

• Kernel configuration is modified to activate Debugfs
and Minstrel.

• Debugfs is used to obtain the necessary information
in the kernel space at the user space through Minstrel.

• Minstrel is used to obtain the necessary information
for the FBS method.

• iw is modified to allow the assignment of a specified
value (fixed backoff-time) to CWmin.

• FBSdaemon is newly implemented as a daemon ap-
plication to calculate the target/active link activation
rates and select the fixed back-off time by comparing
them as the main procedure of the FBS method.

mac80211

ath5k/ath9k

Minstrel

Debugfs

FBSDaemon

iw

cfg80211

Fig. 3: Data Flow for FBS Method in Linux Implementation.

B. Kernel configuration

For our Linux-FBS, we need to activate some features in
Linux kernel configurations such as Debugfs [17] and Minstrel
[18] that are used for wireless networks. Therefore, we set up
the configuration of the Linux kernel as follows:

CONFIG_DEBUG_FS=y
CONFIG_DEBUG_KERNEL=y
CONFIG_WIRELESS=y
CONFIG_CFG8011=m
CONFIG_CFG80211_DEBUGFS=y
CONFIG_LIB80211=m
CONFIG_LIB80211_DEBUG=y
CONFIG_MAC80211=m
CONFIG_MAC80211_RC_MINSTREL=y
CONFIG_MAC80211_RC_MINSTREL_HT=y
CONFIG_MAC80211_RC_DEFAULT_MINSTREL=y
CONFIG_MAC80211_RC_DEFAULT="minstrel_ht"
CONFIG_MAC80211_DEBUGFS=y

For the wireless drivers for our implementation, we set up
the configuration of the Linux kernel as follows:

CONFIG_ATH_COMMON=m
CONFIG_ATH_DEBUG=y
CONFIG_ATH5K_DEBUG=y
CONFIG_ATH9K_DEBUGFS=y
CONFIG_ATH9K_HTC_DEBUGFS=y

C. Debugfs

Debugfs is a special file system available in a Linux kernel.
It is technically referred as a kernel space-user-space interface,
and is a simple RAM-based file system that is designed for
debugging the kernel. Debugfs allows a kernel developer to
make information in the kernel space available in the user

space. To compile a Linux kernel with Debugfs, we need to set
CONFIG DEBUG FS option yes. Then, we need to mount
Debugfs with the following command:

mount -t debugfs none /sys/kernel/debug

D. Minstrel

Minstrel is a mac80211 rate control algorithm ported over
from MadWifi that supports multiple rate retries. Minstrel has
been claimed to be one of the best rate control algorithms.
Minstrel provides the success/failure information, the actual
data rate communication, and the status of interface.

After mounting Debugfs, we can use Minstrel from a
subdirectory of Debugfs. Inside the directory of /sys/kernel/de-
bug/ieee80211/phy0/netdev:wlan0/stations, subdirectories exist
where each subdirectory corresponds to each wireless node
in the network such as a host (client PC) that is associated
with the Linux-FBS. The name of a subdirectory is the MAC
address of the associated node. For example, /sys/kernel/de-
bug/ieee80211/phy0/netdev:wlan0/stations/
00:22:cf:72:21:22/ represents a subdirectory corresponding to
a node whose mac address is 00:22:cf:72:21:22. Inside of this
subdirectory, we can find the files of the minstrel information
for this node.

For the FBS method, we use the following files from
Minstrel: rc stats, tx bytes, tx packets, tx retry count, and
tx retry failed.

From the tx packets file, we can get the value for s fi j
(the total number of successfully transmitted frames of link
li j). From the rc stats file, we can get the value for aci j (the
number of possibly activating chances) from the attemp value.
Then, we can calculate the value for rai j (actual link activation
rate). Also, from this file, we can get the value for rbi j (the
number of bits to be transmitted per second for link li j) from
the throughput value.

Then, we can get the value for sbi j (the total number of
successfully transmitted bits by link li j) from the tx bytes file,
the value for o fi j (the total number of transmitted frames of
the interfered links with link li j) from the tx retry count file,
and the value for f fi j (the total number of failed frames) from
the tx retry failed file, respectively. Then, we can calculate
the value for tai j (target link activation rate).

1) Modification of iw: iw[19] is a new nl80211 based CLI
(Command Line Interface) configuration utility for wireless
devices. nl80211 is a new IEEE 802.11 netlink interface
public header. iw supports most of the new drivers that have
been recently added to the Linux kernel. In our Linux-FBS
implementation, we use iw to assign the fixed backoff-time
in the FBS method by changing the values of the variables
for Wi-Fi Multimedia (WMM) in IEEE802.11e, namely CWmin,
CWmax, AIFS , and T XOP.

However, a default application of iw cannot access to or
modify the values for them. Thus, we modified the source code
of iw so that it is possible. In this source code modification, we
use a function in the hostapd application so that we can change
the values for CWmin, CWmax, AIFS , and T XOP. Actually, we
add the handle txq params function in the phy.c file to access
to T XQ PARAMS in wireless Linux kernel parameters.

Using the iw phy0 set txq params 0 0 0 0 10 command, we
set the values of the WMM variables for class 0 (Best Effort),
such that CWmin = CWmax = T XOP = 0, and AIFS = 10 if
the selected fixed backoff-time in the FBS method is 10 for
this link.

Listing 1 shows our modification of the source code for
iw.
s t a t i c i n t handled txq params (s t r u c t n l 8 0 2 1 1 s t a t e ∗

s t a t e , s t r u c t nl cb ∗cb , s t r u c t nl msg ∗msg , i n t
a rgc , c h a r ∗∗ a rgv)

{
u8 queue , a i f s ;
u16 cwmin , cwmax , txop ;

s t r u c t n l a t t r ∗ t x q ;

/ / S a n i t y c h e c k i n g
. . .

queue = s t r t o u l (a rgv [0] , NULL, 10) ;
cwmin = s t r t o u l (a rgv [1] , NULL, 10) ;
cwmax = s t r t o u l (a rgv [2] , NULL, 10) ;
t xo p = s t r t o u l (a rgv [3] , NULL, 10) ;
a i f s = s t r t o u l (a rgv [4] , NULL, 10) ;

p r i n t f (” S e t TXQ PARAMS f o r c l a s s [%d] : cwmin=%d
cwmax=%d txop=%d a i f s=%d\n ” , queue , cwmin ,
cwmax , txop , a i f s) ;

/ / Range c h e c k i n g f o r t h e a c c e s s c l a s s param
. . .

t x q = n l a n e s t s t a r t (msg ,
NL80211 ATTR WIPHY TXQ PARAMS) ;

i f (! t x q)
r e t u r n −ENOBUFS;

s t r u c t n l a t t r ∗ t x = n l a n e s t s t a r t (msg , queue
) ;

NLA PUT U8(msg , NL80211 TXQ ATTR QUEUE,
queue) ;

NLA PUT U16(msg , NL80211 TXQ ATTR CWMIN,
cwmin) ;

NLA PUT U16(msg , NL80211 TXQ ATTR CWMAX,
cwmax) ;

NLA PUT U16(msg , NL80211 TXQ ATTR TXOP, tx op
) ;

NLA PUT U8(msg , NL80211 TXQ ATTR AIFS , a i f s)
;

n la nes t end (msg , t x) ;

n la nest end (msg , t x q) ;

r e t u r n 0 ;

n l a p u t f a i l u r e :
r e t u r n −ENOBUFS;

}
COMMAND(s e t , txq params , ”< a c c e s s c l a s s > <cwmin> <

cwmax> < txop> < a i f s >” , NL80211 CMD SET WIPHY, 0 ,
CIB PHY, handle txq params , ” S e t TXQ PARAMS

wi th Queue , CWmin , CWmax, TXOP, AIFS\n ”) ;

Listing 1: ”IW modification in phy.c”

E. FBSdaemon

We implement the procedure for the FBS method by
generating a daemon application using Perl. In this paper, we
call this application FBSdaemon.

The main cycle for the backoff-time control for the FBS
method in FBSdaemon consists of the four steps: 1) reading
the necessary files from Minstrel, 2) calculating both the target
and active link activation rates, 3) selecting the fixed back-off
time by comparing the both rates, and 4) assigning the selected
fixed back-off time to AIFS by using the syntax system and
calling the modified iw application. Besides, FBSdaemon can
give a log report, and can run in the background.

Algorithm 1 shows this procedure in FBSdaemon.

input : Minstrel files: rc stats, tx bytes, tx packets,
tx retry count, tx retry f ailed
BO file

output: AIFS

Perl initialization for Daemon, Log, Files;
begin

Log start;
Daemonize;
for (;;) do

aci j ← read(rc stats, attemp);
s fi j ← read(rc stats, success);

sbi j ← read(tx bytes);
s fi j ← read(tx packets);
o fi j ← read(tx retry count);
f fi j ← read(tx retry f ailed);

active ← read(bo f ile, active);
passive ← read(bo f ile, passive);

Calculate rai j, tai j;
if rai j < tai j then

AIFS ← active
else

AIFS ← passive
end
system(”iw phy0 set txq params 0 0 0 0
AIFS ”);
wait(300s);

end
end

Algorithm 1: FBS Daemon

IV. Experiment using Linux PC

In this section, we show implementation result using Linux
PC to evaluate the CSMA-FBS protocol.

Host

AP2 AP1

Server

Fig. 4: Topology of Experiment.

Three Linux PCs with adhoc mode connected as shown in
Figure 2. We sent 2Mb TCP packets data by using iperf[20]

program from host to server to make network fully loaded,
we monitor the throughput performance by using nload[21]
application. The simulation environment is summarized in
Table I.

TABLE I: Simulation environment.

Parameter Value
Proc Intel i5
Interface Atheros AR9285(bgn)
OS Debian GNU/Linux
Kernel 2.6.39 Custom

Debugfs and minstrel
User space iw 0.19 (custom)
Applications perl 5.10

Iperf, nload

We conduct the experiment for 50 times and compare the
throughput between two protocols. The average throughput
result for CSMA protocol is 17.33 Mbps and for CSMA-FBS
protocol is 22.23 Mbps. This results indicates that CSMA-
FBS throughput is better than CSMA protocol. From the
simulation[8], CSMA-FBS shows around 40% better rather
than CSMA protocol but in Linux implementation, the ef-
fectiveness is only around 28%. This is because in Linux
implementation the range of topology is different.

V. Conclusion

In this paper, we presented a Linux implementation for
the Fixed Backoff-time Switching (FBS) method for the CS-
MA/CA protocol in the Wireless Internet-access Mesh Network
(WIMNET). Our implementation consists of implementations
or modifications of the five programs: Kernel configuration,
Debugfs, Minstrel, iw, and FBSdaemon. In this Linux imple-
mentation, our CSMA-FBS gives better performance rather
then CSMA protocol. In our future works, we will refine the
codes of the implementation, generate a testbed with multiple
Linux-APs implementing the FBS method, and investigate the
performance of our method in a real network topology.

Acknowledgment

This work is partially supported by KAKENHI (22500059).

References

[1] I. F. Akyildiz, X. Wang, and W. Wang, Wireless mesh networks: a
survey, Comput. Netw. ISDN Syst., vol. 47, no. 4, pp. 445-487, March
2005.

[2] Y. Zhang, J. Luo, and H. Hu, Wireless mesh networking: architectures,
protocols and standards, Auerbach Pub., 2006.

[3] N. Funabiki edited, Wireless mesh networks, InTech - Open Ac-
cess Pub., 2011, http://www.intechopen.com/books/show/title/wireless-
mesh-networks.

[4] Part 11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications, IEEE Std. 802.11, 1999.

[5] S. Tajima, N. Funabiki, and T. Higashino, ”A proposal of fixed
backoff-time switching method by link activation rate for wireless mesh
networks,” Proc. Int. Conf. Complex, Intell., Software Intensive Sys.
(CISIS), pp. 647-652, 2011.

[6] N. Funabiki, S. Sukaridhoto, Z. Wang, T. Nakanishi, K. Watanabe,
and S. Tajima, ”An implementation of fixed backoff-time switching
method on IEEE 802.11 MAC protocol for wireless Internet-access
mesh network,” Proc. Int. Work. Smart Info-Media Sys. Asia (SISA
2011), pp. 67-72, Oct. 2011.

[7] S. Sukaridhoto, N. Funabiki, T. Nakanishi, and K. Watanabe, ”A
proposal of CSMA fixed backoff-time switching protocol and its Im-
plementation on QualNet simulator for wireless mesh networks”, Proc.
WAINA, March 2012.

[8] S. Sukaridhoto, N. Funabiki, T. Nakanishi, K. Watanabe and S. Tajima,
”A Fixed Backoff-Time Switching Method for CSMA/CA Protocol in
Wireless Mesh Networks”, IEICE TRANSACTIOINS on Communica-
tions, vol. 96, no. 4, pp. 1019-1029, Apr. 2013.

[9] S. Sukaridhoto, N. Funabiki, T. Nakanishi, K. Watanabe and S. Tajima,
”A Linux Implementation Design of Fixed Backoff-time Switching
Method for Wireless Mesh Networks”, IEICE Tech. Rep., vol. 112,
NS2012-67, pp.83-88, Sept. 2012.

[10] S. Sukaridhoto, N. Funabiki, T. Nakanishi, K. Watanabe and S. Tajima,
”An Idea of Linux Implementation of Fixed Backoff-time Switching
Method for Wireless Mesh Networks”, Proceedings of the Society
Conference of IEICE, 2012.

[11] QualNet simulator, Scalable network tech., http://www.scalable-
networks.com.

[12] G. A. D. Caro, Analysis of simulation environments for mobile ad hoc
networks, Tech. Rep., no. IDSIA-24-03, Dec. 2003.

[13] M. Vipin and S. Srikanth, Analysis of open source drivers for IEEE
802.11 WLANs, Proc. ICWCSC 2010, 2010.

[14] K. Chebrolu and B. Raman, FRACTEL: a fresh perspective on (rural)
mesh networks, Proc. ACM SIGCOMM NSDR, Aug. 2007.

[15] A. Sharma and E. M. Belding, FreeMAC: implementing a multi-channel
TDMA MAC on 802.11 hardware, http://moment.cs.ucsb.edu/∼asharma/
freemac-mobisys.pdf.

[16] P. Djukic and P. Mohapatra, Soft-TDMAC: a software TDMA-based
MAC over commodity 802.11 hardware, Proc. INFOCOM, April 2009.

[17] Debug - Linux Wireless http://linuxwireless.org/en/users/Drivers/
ath9k/debug.

[18] Minstrel - Linux Wireless, http://linuxwireless.org/en/developers/
Documentation/mac80211/RateControl/minstrel/.

[19] iw - Linux Wireless http://wireless.kernel.org/en/users/
Documentation/iw.

[20] iperf - TCP and UDP bandwidth performance measurement tool
https://code.google.com/p/iperf/.

[21] nload - a console application which monitors network traffic and
bandwidth usage in realtime. http://sourceforge.net/projects/nload/.

